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1 The Simple Plane Pendulum

A simple plane pendulum consists, ideally, of a point mass connected by a light rod of length L to a frictionless
pivot. The mass is displaced from its natural vertical position and released, after which it swings back and forth.
There are two major questions we would like to answer:

1. What is the angle � of the pendulum from the vertical at any time t?

2. What is the period of the motion?

For such a simple system, the simple plane pendulum has a surprisingly complicated solution. We’ll first
derive the differential equation of motion to be solved, then find both the approximate and exact solutions.

2 Differential Equation of Motion

To derive the differential equation of motion for the pendulum, we begin with Newton’s second law in rotational
form:

� D I˛ D I
d 2�

dt2
; (1)

where � is the torque, I is the moment of inertia, ˛ is the angular acceleration, and � is the angle from the vertical.
In the case of the pendulum, the torque is given by

� D �mgL sin �; (2)

and the moment of inertia is

I D mL2: (3)

Substituting these expressions for � and I into Eq. (1), we get the second-order differential equation

�mgL sin � D mL2 d 2�

dt2
; (4)

which simplifies to give the differential equation of motion,

d 2�

dt2
D � g

L
sin � (5)
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3 Approximate Solution

3.1 Equation of Motion

The easy way to solve Eq. (5) is to restrict the solution to cases where the angle � is small. In that case, we can
make the linear approximation

sin � � �; (6)

where � is measured in radians. In this case, Eq. (5) becomes the differential equation for a simple harmonic
oscillator,

d 2�

dt2
D � g

L
�: (7)

The solution to this differential equation is

�.t/ D �0 cos

�r
g

L
t C ı

�
; (8)

as may be verified by direct substitution. Here �0 and ı are arbitrary constants that depend on the initial conditions.
The angle �0 is called the amplitude of the motion, and is the maximum displacement of the pendulum from the
vertical. The constant ı is called the phase constant, and represents where in its motion the pendulum is at time
t D 0.

3.2 Period

Eq. (8) implies that the angular frequency of the motion is ! D p
g=L; since the period T D 2�=!, we find the

period for small amplitudes to be

T0 D 2�

s
L

g
: (9)

4 Exact Solution

While the small-angle approximate solution to Eq. (5) is fairly straightforward,finding an exact solution for angles
that are not necessarily small is considerably more difficult. We won’t go through the derivations here—we’ll just
look at the results. Here we’ll assume the amplitude of the motion �0 < � , so that the pendulum does not spin in
complete circles around the pivot, but simply oscillates back and forth.

4.1 Equation of Motion

When the amplitude �0 is not necessarily small, the angle � from the vertical at any time t is found to be

�.t/ D 2 sin�1

�
k sn

�r
g

L
.t � t0/I k

��
: (10)

where sn.xI k/ is a Jacobian elliptic function with modulus k D sin.�0=2/. The time t0 is a time at which the
pendulum is vertical (� D 0).
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The Jacobian elliptic function is one of a number of so-called “special functions” that often appear in math-
ematical physics. In this case, the function sn.xI k/ is defined as a kind of inverse of an integral. Given the
function

u.yI k/ D
Z y

0

dtp
.1 � t2/.1 � k2t2/

; (11)

the Jacobian elliptic function is defined as the inverse of u:

y D sn.uI k/: (12)

Values of sn.xI k/ may be found in tables of functions or computed by specialized mathematical software libraries.

4.2 Period

Eq. (9) is really only an approximate expression for the period of a simple plane pendulum; the smaller the
amplitude of the motion, the better the approximation. An exact expression for the period is given by

T D 4

s
L

g

Z 1

0

dtp
.1 � t2/.1 � k2t2/

; (13)

which is a type of integral known as a complete elliptic integral of the first kind.
The integral in Eq. (13) cannot be evaluated in closed form, but it can be expanded into an infinite series. The

result is

T D 2�

s
L

g

(
1 C

1X
nD1

�
.2n � 1/ŠŠ

.2n/ŠŠ

�2

sin2n

�
�0

2

�)
(14)

D 2�

s
L

g

(
1 C

1X
nD1

�
.2n/Š

22n.nŠ/2

�2

sin2n

�
�0

2

�)
(15)

We can explicitly write out the first few terms of this series; the result is

T D 2�

s
L

g

�
1 C 1

4
sin2

�
�0

2

�
C 9

64
sin4

�
�0

2

�
C 25

256
sin6

�
�0

2

�

C 1225

16384
sin8

�
�0

2

�
C 3969

65536
sin10

�
�0

2

�
C 53361

1048576
sin12

�
�0

2

�
C 184041

4194304
sin14

�
�0

2

�

C 41409225

1073741824
sin16

�
�0

2

�
C 147744025

4294967296
sin18

�
�0

2

�
C 2133423721

68719476736
sin20

�
�0

2

�
C � � �

�
:

(16)

If we wish, we can write out a series expansion for the period in another form—one which does not involve
the sine function, but only involves powers of the amplitude �0. To do this, we expand sin.�0=2/ into a Taylor
series:

sin
�0

2
D

1X
nD1

.�1/nC1�2n�1
0

22n�1.2n � 1/Š
(17)

D �0

2
� �3

0

48
C �5

0

3840
� �7

0

645120
C �9

0

185794560
� �11

0

81749606400
C � � � (18)
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Figure 1: Ratio of a pendulum’s true period T to its small-angle period T0 D p
L=g, as a function of amplitude

�0. For small amplitudes, this ratio is near 1; for larger amplitudes, the true period is longer than predicted by the
small-angle approximation.

Now substitute this series into the series of Eq. (14) and collect terms. The result is

T D 2�

s
L

g

�
1 C 1

16
�2

0 C 11

3072
�4

0 C 173

737280
�6

0 C 22931

1321205760
�8

0 C 1319183

951268147200
�10

0

C 233526463

2009078326886400
�12

0 C 2673857519

265928913086054400
�14

0

C 39959591850371

44931349155019751424000
�16

0 C 8797116290975003

109991942731488351485952000
�18

0

C 4872532317019728133

668751011807449177034588160000
�20

0 C � � �
�

:

(19)

5 Plot of Period vs. Amplitude

Shown in Fig. 1 is a plot of the ratio of the pendulum’s true period T to its small-angle period T0 (T=.2�
p

L=g/)
vs. amplitude �0 for values of the amplitude between 0 and 180ı, using Eq. (15). As you can see, the ratio is 1

for small amplitudes (as expected), and increasingly deviates from 1 for large amplitudes. The true period will
always be longer than the small-angle period T0.
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