The Nonlinear Pendulum

D.G. Simpson, Ph.D.
Department of Physical Sciences and Engineering
Prince George's Community College

December 31, 2010

1 The Simple Plane Pendulum

A simple plane pendulum consists, ideally, of a point mass connected by a light rod of length L to a frictionless pivot. The mass is displaced from its natural vertical position and released, after which it swings back and forth. There are two major questions we would like to answer:

1. What is the angle θ of the pendulum from the vertical at any time t ?
2. What is the period of the motion?

For such a simple system, the simple plane pendulum has a surprisingly complicated solution. We'll first derive the differential equation of motion to be solved, then find both the approximate and exact solutions.

2 Differential Equation of Motion

To derive the differential equation of motion for the pendulum, we begin with Newton's second law in rotational form:

$$
\begin{equation*}
\tau=I \alpha=I \frac{d^{2} \theta}{d t^{2}} \tag{1}
\end{equation*}
$$

where τ is the torque, I is the moment of inertia, α is the angular acceleration, and θ is the angle from the vertical. In the case of the pendulum, the torque is given by

$$
\begin{equation*}
\tau=-m g L \sin \theta \tag{2}
\end{equation*}
$$

and the moment of inertia is

$$
\begin{equation*}
I=m L^{2} \tag{3}
\end{equation*}
$$

Substituting these expressions for τ and I into Eq. (1), we get the second-order differential equation

$$
\begin{equation*}
-m g L \sin \theta=m L^{2} \frac{d^{2} \theta}{d t^{2}} \tag{4}
\end{equation*}
$$

which simplifies to give the differential equation of motion,

$$
\begin{equation*}
\frac{d^{2} \theta}{d t^{2}}=-\frac{g}{L} \sin \theta \tag{5}
\end{equation*}
$$

3 Approximate Solution

3.1 Equation of Motion

The easy way to solve Eq. (5) is to restrict the solution to cases where the angle θ is small. In that case, we can make the linear approximation

$$
\begin{equation*}
\sin \theta \approx \theta \tag{6}
\end{equation*}
$$

where θ is measured in radians. In this case, Eq. (5) becomes the differential equation for a simple harmonic oscillator,

$$
\begin{equation*}
\frac{d^{2} \theta}{d t^{2}}=-\frac{g}{L} \theta \tag{7}
\end{equation*}
$$

The solution to this differential equation is

$$
\begin{equation*}
\theta(t)=\theta_{0} \cos \left(\sqrt{\frac{g}{L}} t+\delta\right) \tag{8}
\end{equation*}
$$

as may be verified by direct substitution. Here θ_{0} and δ are arbitrary constants that depend on the initial conditions. The angle θ_{0} is called the amplitude of the motion, and is the maximum displacement of the pendulum from the vertical. The constant δ is called the phase constant, and represents where in its motion the pendulum is at time $t=0$.

3.2 Period

Eq. (8) implies that the angular frequency of the motion is $\omega=\sqrt{g / L}$; since the period $T=2 \pi / \omega$, we find the period for small amplitudes to be

$$
\begin{equation*}
T_{0}=2 \pi \sqrt{\frac{L}{g}} \tag{9}
\end{equation*}
$$

4 Exact Solution

While the small-angle approximate solution to Eq. (5) is fairly straightforward, finding an exact solution for angles that are not necessarily small is considerably more difficult. We won't go through the derivations here-we'll just look at the results. Here we'll assume the amplitude of the motion $\theta_{0}<\pi$, so that the pendulum does not spin in complete circles around the pivot, but simply oscillates back and forth.

4.1 Equation of Motion

When the amplitude θ_{0} is not necessarily small, the angle θ from the vertical at any time t is found to be

$$
\begin{equation*}
\theta(t)=2 \sin ^{-1}\left\{k \operatorname{sn}\left[\sqrt{\frac{g}{L}}\left(t-t_{0}\right) ; k\right]\right\} \tag{10}
\end{equation*}
$$

where $\operatorname{sn}(x ; k)$ is a Jacobian elliptic function with modulus $k=\sin \left(\theta_{0} / 2\right)$. The time t_{0} is a time at which the pendulum is vertical $(\theta=0)$.

The Jacobian elliptic function is one of a number of so-called "special functions" that often appear in mathematical physics. In this case, the function $\operatorname{sn}(x ; k)$ is defined as a kind of inverse of an integral. Given the function

$$
\begin{equation*}
u(y ; k)=\int_{0}^{y} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}} \tag{11}
\end{equation*}
$$

the Jacobian elliptic function is defined as the inverse of u :

$$
\begin{equation*}
y=\operatorname{sn}(u ; k) \tag{12}
\end{equation*}
$$

Values of $\operatorname{sn}(x ; k)$ may be found in tables of functions or computed by specialized mathematical software libraries.

4.2 Period

Eq. (9) is really only an approximate expression for the period of a simple plane pendulum; the smaller the amplitude of the motion, the better the approximation. An exact expression for the period is given by

$$
\begin{equation*}
T=4 \sqrt{\frac{L}{g}} \int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}} \tag{13}
\end{equation*}
$$

which is a type of integral known as a complete elliptic integral of the first kind.
The integral in Eq. (13) cannot be evaluated in closed form, but it can be expanded into an infinite series. The result is

$$
\begin{align*}
T & =2 \pi \sqrt{\frac{L}{g}}\left\{1+\sum_{n=1}^{\infty}\left[\frac{(2 n-1)!!}{(2 n)!!}\right]^{2} \sin ^{2 n}\left(\frac{\theta_{0}}{2}\right)\right\} \tag{14}\\
& =2 \pi \sqrt{\frac{L}{g}}\left\{1+\sum_{n=1}^{\infty}\left[\frac{(2 n)!}{2^{2 n}(n!)^{2}}\right]^{2} \sin ^{2 n}\left(\frac{\theta_{0}}{2}\right)\right\} \tag{15}
\end{align*}
$$

We can explicitly write out the first few terms of this series; the result is

$$
\begin{align*}
T= & 2 \pi \sqrt{\frac{L}{g}}\left[1+\frac{1}{4} \sin ^{2}\left(\frac{\theta_{0}}{2}\right)+\frac{9}{64} \sin ^{4}\left(\frac{\theta_{0}}{2}\right)+\frac{25}{256} \sin ^{6}\left(\frac{\theta_{0}}{2}\right)\right. \\
& +\frac{1225}{16384} \sin ^{8}\left(\frac{\theta_{0}}{2}\right)+\frac{3969}{65536} \sin ^{10}\left(\frac{\theta_{0}}{2}\right)+\frac{53361}{1048576} \sin ^{12}\left(\frac{\theta_{0}}{2}\right)+\frac{184041}{4194304} \sin ^{14}\left(\frac{\theta_{0}}{2}\right) \tag{16}\\
& \left.+\frac{41409225}{1073741824} \sin ^{16}\left(\frac{\theta_{0}}{2}\right)+\frac{147744025}{4294967296} \sin ^{18}\left(\frac{\theta_{0}}{2}\right)+\frac{2133423721}{68719476736} \sin ^{20}\left(\frac{\theta_{0}}{2}\right)+\cdots\right]
\end{align*}
$$

If we wish, we can write out a series expansion for the period in another form-one which does not involve the sine function, but only involves powers of the amplitude θ_{0}. To do this, we expand $\sin \left(\theta_{0} / 2\right)$ into a Taylor series:

$$
\begin{align*}
\sin \frac{\theta_{0}}{2} & =\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \theta_{0}^{2 n-1}}{2^{2 n-1}(2 n-1)!} \tag{17}\\
& =\frac{\theta_{0}}{2}-\frac{\theta_{0}^{3}}{48}+\frac{\theta_{0}^{5}}{3840}-\frac{\theta_{0}^{7}}{645120}+\frac{\theta_{0}^{9}}{185794560}-\frac{\theta_{0}^{11}}{81749606400}+\cdots \tag{18}
\end{align*}
$$

Figure 1: Ratio of a pendulum's true period T to its small-angle period $T_{0}=\sqrt{L / g}$, as a function of amplitude θ_{0}. For small amplitudes, this ratio is near 1 ; for larger amplitudes, the true period is longer than predicted by the small-angle approximation.

Now substitute this series into the series of Eq. (14) and collect terms. The result is

$$
\begin{align*}
T= & 2 \pi \sqrt{\frac{L}{g}}\left(1+\frac{1}{16} \theta_{0}^{2}+\frac{11}{3072} \theta_{0}^{4}+\frac{173}{737280} \theta_{0}^{6}+\frac{22931}{1321205760} \theta_{0}^{8}+\frac{1319183}{951268147200} \theta_{0}^{10}\right. \\
& +\frac{233526463}{2009078326886400} \theta_{0}^{12}+\frac{2673857519}{265928913086054400} \theta_{0}^{14} \tag{19}\\
& +\frac{39959591850371}{44931349155019751424000} \theta_{0}^{16}+\frac{8797116290975003}{109991942731488351485952000} \theta_{0}^{18} \\
& \left.+\frac{4872532317019728133}{668751011807449177034588160000} \theta_{0}^{20}+\cdots\right) .
\end{align*}
$$

5 Plot of Period vs. Amplitude

Shown in Fig. 1 is a plot of the ratio of the pendulum's true period T to its small-angle period $T_{0}(T /(2 \pi \sqrt{L / g}))$ vs. amplitude θ_{0} for values of the amplitude between 0 and 180°, using Eq. (15). As you can see, the ratio is 1 for small amplitudes (as expected), and increasingly deviates from 1 for large amplitudes. The true period will always be longer than the small-angle period T_{0}.

6 References

1. L.P. Fulcher and B.F. Davis, "Theoretical and experimental study of the motion of the simple pendulum", Am. J. Phys., 44, 51 (1976).
2. R.A. Nelson and M.G. Olsson, "The pendulum—Rich physics from a simple system", Am. J. Phys., 54, 112 (1986).
3. E.T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Cambridge, New York, 1937), 4th ed., p. 73.
4. G.L. Baker and J.A. Blackburn, The Pendulum: A Case Study in Physics (Oxford, New York, 2005).
