Use of Inverse Trigonometric Functions with Electronic Calculators

D.G. Simpson, Ph.D. Department of Physical Sciences and Engineering Prince George's Community College

October 25, 2000

1 Introduction

When you use the inverse trigonometric functions on your calculator (\sin^{-1} , \cos^{-1} , \tan^{-1}), your calculator will return an angle as its result. In general, though, your calculator should return *two* answers. This note shows how to find the other angle—the one your calculator doesn't show you.

2 Arcsin

Given a number between -1 and +1, the \sin^{-1} (inverse sine) function on your calculator will return an angle θ between -90° and $+90^{\circ}$. The other angle will be $180^{\circ} - \theta$.

Example 1. What are the arcsines of 0.224?

Answer 1. Finding $\sin^{-1}(0.224)$ on your calculator (in "degree" mode) returns an answer of $12^{\circ}.9441$. The other answer is $180^{\circ} - 12^{\circ}.9441 = 167^{\circ}.0559$. On the TI-83+ calculator:

sin⁻¹(0.224) [ENTER]
12.94408154
180 - [2nd] ANS [ENTER]
167.0559185

Example 2. What are the arcsines of -0.1325?

Answer 2. Finding $\sin^{-1}(-0.1325)$ on your calculator (in "degree" mode) returns an answer of $-7^{\circ}.6141$. The other answer is $180^{\circ} - (-7^{\circ}.6141) = 187^{\circ}.6141$. On the TI-83+ calculator:

sin⁻¹(-0.1325) [ENTER]
-7.61408174
180 - [2nd] ANS [ENTER]
187.6140817

3 Arccos

Given a number between -1 and +1, the \cos^{-1} (inverse cosine) function on your calculator will return an angle θ between 0° and 180° . The other angle will be $-\theta$.

Example 3. What are the arccosines of 0.759?

Answer 3. Finding $\cos^{-1}(0.759)$ on your calculator (in "degree" mode) returns an answer of $40^{\circ}.6239$. The other answer is $-40^{\circ}.6239$. (You may add 360° to this if you wish; it's the same angle. $-40^{\circ}.6239 = -40^{\circ}.6239 + 360^{\circ} = 319^{\circ}.3761$.

On the TI-83+ calculator:

```
cos<sup>-1</sup>(0.759) [ENTER]
40.62388077
(-) [2nd] ANS [ENTER]
-40.62388077
[2nd] ANS + 360 [ENTER]
319.3761192
```

Example 4. What are the arccosines of -0.344?

Answer 4. Finding $\cos^{-1}(-0.344)$ on your calculator (in "degree" mode) returns an answer of 110°.1208. The other answer is $-110^{\circ}.1208$. (You may add 360° to this if you wish; it's the same angle. $-110^{\circ}.1208 = -110^{\circ}.1208 + 360^{\circ} = 249^{\circ}.8792$.

On the TI-83+ calculator:

```
cos<sup>-1</sup>(-0.344) [ENTER]
110.120764
(-) [2nd] ANS [ENTER]
-110.120764
[2nd] ANS + 360 [ENTER]
249.879236
```

4 Arctan

Given a real number, the \tan^{-1} (inverse tangent) function on your calculator will return an angle θ between -90° and $+90^{\circ}$. The other angle will be $180^{\circ} + \theta$.

We often need to take the inverse tangent of a *ratio* of two numbers. In this case, you can place the inverse tangent in the correct quadrant by adding 180° to the calculator's result if the denominator of the ratio is negative.

Some computer programming languages include *two* arctangent functions: one that takes one argument (like a calculator), and another that takes the numerator and denominator of a ratio. For example, C has two such functions, called $\mathtt{atan}()$ and $\mathtt{atan2}()$. Using $\mathtt{atan2}(y,x)$ computes $\mathtt{tan}^{-1}(y/x)$ and returns an angle in the correct quadrant.

Example 5. What are the arctangents of 1.784?

Answer 5. Finding $\tan^{-1}(1.784)$ on your calculator (in "degree" mode) returns an answer of $60^{\circ}.7277$. The other answer is $60^{\circ}.7277 + 180^{\circ} = 240^{\circ}.7277$.

On the TI-83+ calculator:

tan⁻¹(1.784) [ENTER]
60.72770782
[2nd] ANS + 180 [ENTER]
240.7277078

Example 6. What are the arctangents of -0.821?

Answer 6. Finding $\tan^{-1}(-0.821)$ on your calculator (in "degree" mode) returns an answer of $-39^{\circ}.3860$. The other answer is $-39^{\circ}.3860 + 180^{\circ} = 140^{\circ}.6140$. On the TI-83+ calculator:

tan⁻¹(-0.821) [ENTER]
 -39.38599545
[2nd] ANS + 180 [ENTER]
 140.6140046

Example 7. What is the arctangent of (-4)/3?

Answer 7. Finding $\tan^{-1}(-4/3)$ on your calculator (in "degree" mode) returns an answer of -53° .1301. Since the denominator (3) is positive, we do nothing more; this is the final answer. On the TI-83+ calculator:

tan⁻¹(-4/3) [ENTER] -53.13010235

Example 8. What is the arctangent of 4/(-3)?

Answer 8. Finding $\tan^{-1}(-4/3)$ on your calculator (in "degree" mode) returns an answer of $-53^{\circ}.1301$. Since the denominator (-3) is negative, we add $180^{\circ}: -53^{\circ}.1301 + 180^{\circ} = 126^{\circ}.8699$. On the TI-83+ calculator:

tan⁻¹(-4/3) + 180 [ENTER] 126.8698976

5 Summary

The following table summarizes how to find both inverse trigonometric function results with your calculator:

	Calculator	Other
	answer	answer
\sin^{-1}	θ	$180^{\circ} - \theta$
\cos^{-1}	heta	- heta
\tan^{-1}	heta	$\theta + 180^{\circ}$

When computing $\tan^{-1}(y/x)$, add 180° to the calculator's answer if the denominator (x) is negative.

Multiples of 360° may always be added to or subtracted from an angle; the result is the same angle.