Use of Inverse Trigonometric Functions with Electronic Calculators

D.G. Simpson, Ph.D.
Department of Physical Sciences and Engineering
Prince George's Community College

October 25, 2000

1 Introduction

When you use the inverse trigonometric functions on your calculator ($\sin ^{-1}, \cos ^{-1}$, $\tan ^{-1}$), your calculator will return an angle as its result. In general, though, your calculator should return two answers. This note shows how to find the other anglethe one your calculator doesn't show you.

2 Arcsin

Given a number between -1 and +1 , the $\sin ^{-1}$ (inverse sine) function on your calculator will return an angle θ between -90° and $+90^{\circ}$. The other angle will be $180^{\circ}-\theta$.

Example 1. What are the arcsines of 0.224 ?
Answer 1. Finding $\sin ^{-1}(0.224)$ on your calculator (in "degree" mode) returns an answer of $12^{\circ} .9441$. The other answer is $180^{\circ}-12^{\circ} .9441=167^{\circ} .0559$. On the TI-83+ calculator:

```
sin}\mp@subsup{}{}{-1}(0.224) [ENTER
    12.94408154
180 - [2nd] ANS [ENTER]
    167.0559185
```

Example 2. What are the arcsines of -0.1325 ?
Answer 2. Finding $\sin ^{-1}(-0.1325)$ on your calculator (in "degree" mode) returns an answer of $-7^{\circ} .6141$. The other answer is $180^{\circ}-\left(-7^{\circ} .6141\right)=187^{\circ} .6141$. On the TI-83+ calculator:

```
    sin}\mp@subsup{}{}{-1}(-0.1325) [ENTER
    -7.61408174
180 - [2nd] ANS [ENTER]
    187.6140817
```


3 Arccos

Given a number between -1 and +1 , the $\cos ^{-1}$ (inverse cosine) function on your calculator will return an angle θ between 0° and 180°. The other angle will be $-\theta$.

Example 3. What are the arccosines of 0.759 ?
Answer 3. Finding $\cos ^{-1}(0.759)$ on your calculator (in "degree" mode) returns an answer of $40^{\circ} .6239$. The other answer is $-40^{\circ} .6239$. (You may add 360° to this if you wish; it's the same angle. $-40^{\circ} .6239=-40^{\circ} .6239+360^{\circ}=319^{\circ} .3761$.

On the TI-83+ calculator:

```
\(\cos ^{-1}(0.759)\) [ENTER]
    40.62388077
(-) [2nd] ANS [ENTER]
    -40.62388077
[2nd] ANS + 360 [ENTER]
    319.3761192
```

Example 4. What are the arccosines of -0.344 ?
Answer 4. Finding $\cos ^{-1}(-0.344)$ on your calculator (in "degree" mode) returns an answer of $110^{\circ} .1208$. The other answer is $-110^{\circ} .1208$. (You may add 360° to this if you wish; it's the same angle. $-110^{\circ} .1208=-110^{\circ} .1208+360^{\circ}=249^{\circ} .8792$.

On the TI-83+ calculator:

```
\mp@subsup{\operatorname{cos}}{}{-1}(-0.344) [ENTER]
    110.120764
(-) [2nd] ANS [ENTER]
    -110.120764
[2nd] ANS + 360 [ENTER]
    249.879236
```


4 Arctan

Given a real number, the $\tan ^{-1}$ (inverse tangent) function on your calculator will return an angle θ between -90° and $+90^{\circ}$. The other angle will be $180^{\circ}+\theta$.

We often need to take the inverse tangent of a ratio of two numbers. In this case, you can place the inverse tangent in the correct quadrant by adding 180° to the calculator's result if the denominator of the ratio is negative.

Some computer programming languages include two arctangent functions: one that takes one argument (like a calculator), and another that takes the numerator and denominator of a ratio. For example, C has two such functions, called atan () and atan2(). Using atan2 (y, x) computes $\tan ^{-1}(y / x)$ and returns an angle in the correct quadrant.

Example 5. What are the arctangents of 1.784 ?
Answer 5. Finding $\tan ^{-1}(1.784)$ on your calculator (in "degree" mode) returns an answer of $60^{\circ} .7277$. The other answer is $60^{\circ} .7277+180^{\circ}=240^{\circ} .7277$.

On the TI-83+ calculator:

```
tan}\mp@subsup{}{}{-1}(1.784) [ENTER
    60.72770782
[2nd] ANS + 180 [ENTER]
    240.7277078
```

Example 6. What are the arctangents of -0.821 ?
Answer 6. Finding $\tan ^{-1}(-0.821)$ on your calculator (in "degree" mode) returns an answer of $-39^{\circ} .3860$. The other answer is $-39^{\circ} .3860+180^{\circ}=140^{\circ} .6140$. On the TI-83+ calculator:

```
tan-1}(-0.821) [ENTER]
    -39.38599545
[2nd] ANS + 180 [ENTER]
    140.6140046
```

Example 7. What is the arctangent of $(-4) / 3$?
Answer 7. Finding $\tan ^{-1}(-4 / 3)$ on your calculator (in "degree" mode) returns an answer of $-53^{\circ} .1301$. Since the denominator (3) is positive, we do nothing more; this is the final answer. On the TI-83+ calculator:

```
tan}\mp@subsup{}{}{-1}(-4/3) [ENTER
    -53.13010235
```

Example 8. What is the arctangent of $4 /(-3)$?
Answer 8. Finding $\tan ^{-1}(-4 / 3)$ on your calculator (in "degree" mode) returns an answer of $-53^{\circ} .1301$. Since the denominator (-3) is negative, we add $180^{\circ}:-53^{\circ} .1301+$ $180^{\circ}=126^{\circ} .8699$. On the TI-83+ calculator:

```
\mp@subsup{\operatorname{tan}}{}{-1}(-4/3) + 180 [ENTER]
    126.8698976
```


5 Summary

The following table summarizes how to find both inverse trigonometric function results with your calculator:

	Calculator answer	Other answer
$\sin ^{-1}$	θ	$180^{\circ}-\theta$
$\cos ^{-1}$	θ	$-\theta$
$\tan ^{-1}$	θ	$\theta+180^{\circ}$

When computing $\tan ^{-1}(y / x)$, add 180° to the calculator's answer if the denominator (x) is negative.

Multiples of 360° may always be added to or subtracted from an angle; the result is the same angle.

